可解释的人工智能:使商业人工智能的采用可信
2019/10/22 11:50:16
对许多组织而言,由于缺乏透明度,人工智能仍然是谜团重重,人们不敢将其投入生产中。但是需求,进步和新兴的标准可能很快会改变这一切。
就利用人工智能和机器学习而言,人们对结果的信任是很重要的。由于所谓的人工智能“黑匣子”问题,许多组织(尤其是那些受管制的行业的组织)可能会犹豫不决,不敢使用人工智能系统:算法只是得出模糊的决策而没有解释其所遵循的理由。
这是一个显而易见的问题。如果我们不知道人工智能如何发挥作用,那我们又如何将医疗诊断或自动驾驶汽车等领域里生死攸关的决策交给人工智能来做?
这个问题的中心是神话所笼罩的技术问题。如今,人们普遍认为,人工智能技术已经变得如此复杂,以至于系统无法解释为何做出自己的决定。即使可以,解释也太复杂了,以至于我们的大脑无法理解。
现实情况是,当今在机器学习和人工智能系统中使用的许多颇常见的算法都可以内建所谓的“可解释性”。我们只是没有在使用它——或者我们无法访问它。对其它算法来说,人们还在开发可解释性和可追溯性功能,但我们很快就能用上了。
在本文中,你将找到可解释的人工智能的含义,它为什么对商业用途来说很重要,以及哪些力量在推动人们采用人工智能,以及哪些因素阻碍了人工智能的应用。
为什么可解释的人工智能很重要
毕马威(KPMB)和Forrester Research去年发布的报告显示,只有21%的美国高管高度信任这两家公司的分析。毕马威(KPMG)的新兴技术风险的全球负责人Martin Sokalski表示:“这些高管不仅相信我们对人工智能所做的分析——而且相信我们所做的分析。
Sokalski说,由于人们对分析缺乏信任,人工智能的采用渐渐放缓,尤其是各大公司对人工智能进行大规模部署的速度放缓。
Sokalski说:“虽然你让聪明的数据科学家想出这些令人惊叹的模型,但是他们却没有施展空间,因为企业领导者不信任也不了解这些模型。我不会在会使我不断与监管机构打交道的模型部署到这些流程中,也不会使让我登上头条新闻的模型部署到这些流程中。”
要考虑监管审查的可不光是医疗和金融服务行业。《通用数据保护条例(GDPR)》称,很多公司都须向客户解释为什么自动化系统会做出决定。
此外,由于无法分析算法如何得出结论,因此各大公司在业务可能上线时很多时候盲目相信人工智能系统的建议。
例如,零售公司Bluestem Brands正在使用人工智能提供定制化的购物建议。但是,如果人工智能系统推荐的商品不是有据可考的畅销物品,或者与销售专家的直觉不符怎么办?
Bluestem Brands的IT主管Jacob Wagner说:“人们往往会说,‘不,这个人工智能坏了,我们应该推荐很畅销的裤子。’”
解决这些信任危机的方案是提供一个解释。人工智能系统在提出建议时使用了哪些因素?这就是可解释的人工智能该出现的场合——人们越来越需要这样的功能。
可解释的人工智能包含了各种各样的工具和技术,这些工具和技术旨在使具备领域专长的人更容易理解人工智能系统的最终解决方案。可解释的人工智能使人们能够参与决策过程,从而使人们更加信任这些系统并对这些结果高度负责。这往往相当于输出人工智能通过培训所学会的规则,并使人类可以对这些规则进行审计,从而了解人工智能如何从未来的数据中得出结论,这些数据的范围超出了数据集。
Wagner说,就Bluestem Brands而言,他能够从Lucidworks提供的当前系统中获得大约85%的解释,但他希望看到更多的解释。
Wagner说:“使人们克服信任障碍是很难的。推荐某物的理由是什么?——我们对此所有用的信息越多,越容
下一页
返回列表
返回首页
©2025 深度学习世界--关注深度学习应用,提供深度学习资料下载和技术交流 电脑版
Powered by iwms