专家探讨数据和人工智能战略的制定
2019/10/17 15:13:00

  尽管关于创建业务战略的信息广为人知,但创建数据和人工智能战略仍然是一个充满挑战的新领域。
  在行业媒体Information Age最近与 Informatica公司合作在伦敦举行的一次圆桌会议上,来自各个行业的技术领导者分享了有关开发数据和人工智能策略的见解,以及如何克服的常见障碍。
  与会者包括:Starling Bank机器学习主管Alison Choy; M&S公司技术、数据主管Chris Waite;汇丰银行人工智能项目经理Sebastian Wilson;维珍航空公司数据和见解主管Tim Lum;Gowling WLG(英国)资讯科技总监Tony McKenna;Willis Towers Watson的数字主管George Zarkadakis;Trainline公司数据科学总监Fergus Weldon;Superbet公司高级顾问Finbarr Joy;Dun&Bradstreet全球业务数据战略和管理负责人Andy Crisp; Data Labs 英国和EMEA地区负责人Javier Campos;Informatica公司EMEA地区副总裁Greg Hanson以及Information Age编辑Nicholas Ismail。
  尽管与会者来自不同领域,但整个讨论过程中都有一个共同的话题:人工智能和机器学习的成功始于拥有强大的数据基础。
  人工智能与数据
  分析、人工智能和机器学习继续在行业取得广泛进展,为企业带来重大机遇。然而,人工智能提高业务性能和竞争力的潜力要求采用不同的方法来管理数据生命周期。
  根据专家在圆桌会议上达成的共识,许多人工智能计划未能启动是因为企业需要从数据中获得洞察,但没有找到实施它们的正确战略。
  Dun&Bradstreet公司全球业务数据战略和管理负责人Andy Crisp认为,这一问题很大程度上源于缺乏技术专长。
  他说:“我认为,要想在数据方面取得成功,企业需要一个非常好的数据管理计划。企业需要能够让人们了解数据背后的机制,并为数据提供场景。我认为在人工智能中看到的一个问题是,模型在没有这种知识的情况下被使用,将会一事无成。”
  下一代数据湖
  根据Informatica公司EMEA地区副总裁Greg Hanson的说法,问题在于缺乏良好的数据治理,而由于数据流的持续增长,这个问题变得更加严重。
  他主张利用数据,须拆除数据孤岛,并用更易访问的下一代数据湖代替,这将使更有效的决策、更全面的见识和更明智的自动化成为可能。
  他说,“如果企业没有提供能够以数据科学家或业务人员可以利用的形式有效地提供数据的工具,那么他们将无法从数据中获得该价值。”
  他补充道:“人工智能可以帮助确保数据的传播和数据的生命周期被跟踪,并提供给组织帮助管理,并证明他们是某人数据的良好监护人。”
  他认为,不能做到这一点的组织将难以开发出高质量的数据产品。由于监管方面的影响,还存在阻碍消费者信任的实际风险。
  提出正确的问题
  虽然毫无疑问,人工智能可以缓解数据管理中的许多挑战,但Trainline公司数据科学总监Fergus Weldon表示,围绕试图找出数据中的需求还有其他问题。
  他说:“我工作中困难的部分是试图回答正确的问题。除了数据争论,我的团队花了很多时间让人们知道他们想问什么。”
  维珍航空公司数据和洞察负责人Tim Lum补充说,收集数据还不够,然后希望人工智能能够对其进行整理。收集数据不应成为主要目标:应该找到收集数据的理由。
  他说,“数据治理离不开数据策略。首先也是颇重要的是,需要弄清楚需要解决的业务问题是什么。”
  在这种信念下,Lum在维珍航空公司的大部分工作都涉及与业务利益相关者一起工作。例如,他最近与客户体验和客舱团队合作,为空乘人员创建客户信息应用程序;这样,通过跨部门分享见解和工作,他们可以更加关注客户。
  他补充说:“几乎没有数据湖或数据仓库到拥有两个人工智能用例

下一页
返回列表
返回首页
©2024 深度学习世界--关注深度学习应用,提供深度学习资料下载和技术交流 电脑版
Powered by iwms