选择正确的人工智能用例的5个技巧
2019/11/12 16:04:23
很多企业可能对采用人工智能还没有做好准备,因此从单个项目开始可能是一个很好的开始。首席信息官在早期人工智能项目中应该有什么收获?
谷歌公司是使用人工智能的先驱之一,在短短的时间内,该公司的净收入同比翻了一番,投资回报丰厚。如今,许多公司都在采用人工智能。调研机构Genesys公司预测,到2022年,60%的美国公司将使用人工智能技术,其原因很简单:这些公司不仅看到了结果,而且担心在市场竞争中输给人工智能驱动的竞争对手。
然而,很多企业并不善于处理人工智能用例。正如提供自动化机器学习工具的Aible公司首席执行官兼创始人、Salesforce Einstein公司创始人之一Arijit Sengupta所解释说:“由于绝大多数人工智能项目都失败了,因此很难提供统计数据来证明人工智能在商业中的有效性。2018年,研究机构Gartner公司估计,85%的人工智能项目没有成功。虽然人工智能技术具有着巨大的潜力,但如今大多数人工智能用例在商业运营方面都失败了。”
以下将讨论首席信息官应该如何处理他们的人工智能使用案例和策略,以取得成功。行业媒体采访了数十位人工智能专家,并分享了他们多年来的实践经验。
1.主要依靠数据的人工智能
众所周知,人工智能依靠数据为生,但是数据的重要性常常被低估了。
聊天机器人开发商Verint公司副总裁Jen Snell解释说:“人工智能中的数据问题的范围和规模远远超出了大多数人的认识。由于数据的原因,很多企业的项目都会遇到问题——从数据质量到管理和整理数据以获得有意义的见解,再到标记和模型构建。一开始似乎很容易,但当企业着眼于规模增长、改变模型、管理和确保对系统的控制时,就会变得棘手。”
Snell的统计数据令人痛苦:虽然59%的高管认为人工智能可以改善对大数据的使用,但85%的大数据项目或人工智能项目却失败了。她说,“我们在15年前就已经意识到了这一点,花费了几年的时间与客户和现实数据一起了解问题的广泛性和系统性。”
因此,拥有可靠和干净的数据对于人工智能转换是难以或缺的——甚至比人工智能算法还要重要。人工智能技术和解决方案提供商Veritone公司应用人工智能主管Aaron Edell说,“我了解到,调整算法和给定模型的数学只会带来很少的改进。对准确性的很大提升来自良好、干净的培训数据。尽早制定数据获取策略是机器学习成功的关键——我希望从一开始就知道这一点。”
如何获取数据对于人工智能用例也是至关重要的。虽然从外部来源购买数据可以让企业脱离实际,但这还不足以让其业务继续运行,因为人工智能不了解它的功能,而且它只会像提供的数据一样好。Edell在研究经过一般训练的模型时发现了这一点。他说:“一个由100万‘名人’训练的名人识别模型,在现实生活中的用例中表现很差,因为它没有按照它要运行的数据进行训练。如果试图了解詹妮弗·安妮斯顿在《老友记》每一集中出现的频率和时间,那么采用她在奥斯卡颁奖典礼上的照片训练的模型,其表现将不如从《老友记》的片段中进行屏幕抓取图片的模型。”
很多家公司都可能需要针对其业务的精心调整的人工智能。从长远来看,这将导致更高效的算法,从而带来更高的收入、更低的成本和更快乐的客户。
2.选择正确的起点
成功的人工智能转型几乎是无所不包的变革。这不仅与技术变革有关,还与文化变革和企业面对来自员工的阻力有关。因此,首席信息官须从头开始规划成功。
企业在实施人工智能用例时,从易到难比较好。正如工作区自动化Avii公司首席执行官Lyle Ball所描述的那样,找到涉及人员的重复性很高的任务,让人工智能系统来
下一页
返回列表
返回首页
©2024 深度学习世界--关注深度学习应用,提供深度学习资料下载和技术交流 电脑版
Powered by iwms